基于深度學習的訪談文本分類模型
首發時間:2023-11-06
摘要:為解決目前深度學習在抑郁癥醫療診斷研究中存在的文本數據標簽不足等問題,本文提出了基于Bert-BiLstm-Attention的情感分類融合模型。首先利用Bert預訓練語言模型提取特征向量,再通過BiLstm雙向長短時記憶網絡與Attention注意力機制相結合的神經網絡模型在情感對話公開數據集進行模型訓練,得到適用于抑郁情緒分析的分類模型。在此基礎上,通過深度遷移學習方法,將模型參數遷移至目標域的訓練中,通過在現實醫療診室對話數據中不斷微調,降低模型困惑度、提升魯棒性,最終獲得一個適用于抑郁醫療診室對話情景的情感分類新模型。實驗結果表明,經過遷移學習方法在目標領域數據集的F1值提升了4.8%。實驗驗證該模型能夠在帶有抑郁情感的訪談文本中取得良好的分類效果,并在現實醫療診室情境中準確地識別出抑郁情緒,能夠為醫學診斷提供重要幫助。
For information in English, please click here
An Interview Text Classification Model Based on Deep Learning
Abstract:To address the current issue of insufficient text data labels in deep learning in the medical diagnosis of depression, this paper proposes an emotion classification fusion model based on Bert BiLstm Attention. Firstly, the Bert pre trained language model is used to extract feature vectors, and then a neural network model combining BiLstm bidirectional long short term memory network and Attention attention mechanism is used to train the model on the public dataset of emotional dialogue, obtaining a classification model suitable for depression analysis. On this basis, through deep transfer learning method, the model parameters are transferred to the target domain for training. Through continuous fine-tuning in real medical consultation room dialogue data, the model\'s confusion is reduced and its robustness is improved. Finally, a new emotion classification model suitable for depression medical consultation room dialogue scenarios is obtained. The experimental results show that the F1 value of the target domain dataset has been improved by 4.8% through transfer learning method. The experimental verification shows that the model can achieve good classification performance in interview texts with depressive emotions, and accurately identify depressive emotions in real medical consulting room scenarios, providing important assistance for medical diagnosis.
Keywords: Artificial intelligence Text classification Emotional analysis Depression recognition Transfer learning
基金:
引用
No.****
同行評議
勘誤表
基于深度學習的訪談文本分類模型
評論
全部評論