Poisson process Models of extreme volatility of Bitcoin prices
首發時間:2023-07-20
Abstract:In recent years, digital currencies based on blockchain technology have received widespread attention from global investors and financial regulatory agencies, and the dramatic fluctuations of their price are the major conerns. Previous studies on asset price fluctuations mainly focused on traditional capital markets such as stocks and bonds, while there are less research on price fluctuations in the emerging digital currency market i.e. the Bitcoin. Bitcoin is a currency with intrinsic value that is difficult to quantify, produced entirely by computer computing power, and has no endorsement from any national government or financial institution as a financial asset. Therefore, as a financial asset, the Bitcoin prices often experience violent fluctuations due to numerous complex factors. In this study, two Poission process models, non-homogeneous Poisson process (NHPP) model and the fractional Poisson process (FPP) model, are used to fit the violent Bitcoin price volatility sequence. The NHPP model generalizes the intensity λ of the Poisson process to a function λ(t), reflecting the non-stationarity of violent Bitcoin price fluctuation events. The fractional Poisson process is also a generalization of the homogeneous Poisson process model, where the time interval distribution is extended from the exponential distribution to the Mittag-Leffler distribution. The fractional Poisson process reflects long-term memory effects. In this study, two Poisson point process models are applied to the event sequence of sharp fluctuations in the price of Bitcoin through estimating model parameters and graphical evaluation model fitting, and the ocurruing of the next is aslo predicted and analyzed.
keywords: Volatility Bitcoin price nonhomogeneous Poisson process Peak-over-Threshold Continuous Time Random Exceedances Fractional Poisson process
點擊查看論文中文信息
比特幣價格劇烈波動的泊松過程模型
摘要:近幾年來,以區塊鏈技術為基礎的數字貨幣受到全球投資者以及金融監管機構的廣泛關注,其價格的劇烈波動現象是其受到關注的主要原因。以往的對于資產價格波動的研究主要針對傳統資本市場如股票、債券等,而對于以比特幣為首的新興數字貨幣市場的價格波動研究較少。比特幣是一種內在價值難以被量化的貨幣,完全依靠計算機算力產出,沒有任何國家政府以及金融機構為其背書。因此作為一種金融資產,比特幣價格必定會由于眾多復雜因素而常常產生劇烈波動。本文分別用基于極值理論(EVT)的非齊次泊松過程(NHPP)模型和分數階泊松過程(FPP)模型擬合了比特幣價格劇烈波動事件序列。NHPP模型將泊松過程的強度λ推廣為函數λ(t),反映了比特幣價格劇烈波動事件的非平穩性。由于很多物理、金融等事件之間的等待時間服從重尾分布,事件時間的集合是類似分形的,我們使用一個新的模型Mittag-Leffler分布來描述比特幣價格劇烈波動事件泊松過程的間隔時間,即分數階泊松過程模型。分數階泊松過程模型也是齊次柏松過程模型的推廣,時間間隔分布由指數分布推廣為Mittag-Leffler分布。分數階泊松過程反映了長期記憶效應。本文通過估計模型參數、圖解法評估模型擬合將兩種泊松過程模型應用于比特幣價格劇烈波動的事件序列,并推斷分析下一個事件發生的時間。
基金:
引用
No.****
動態公開評議
共計0人參與
勘誤表
比特幣價格劇烈波動的泊松過程模型
評論
全部評論