Research on Deep Learning Stock Selection Method Based on Trend Decomposition Algorithm
首發時間:2023-06-27
Abstract:Some studies using machine learning and deep learning models did not fully explore other indicator features that affect stock price trends, resulting in significant prediction errors and difficulty in directly applying the prediction results to obtain excess returns. Therefore, it is necessary to establish an efficient deep learning model based on stock characteristics and fully explore the factors that affect stock price trends to improve prediction accuracy.In view of the shortcomings of traditional stock trend prediction, this paper constructs LSTM-BP neural network based on Tianniuxu optimization for stock price prediction, and constructs PCA-BP neural network model based on particle swarm optimization based on multi angle correlation analysis for trend prediction. Taking into account both price prediction and trend prediction dimensions, construct a deep quantitative stock selection method. In this process, a stock trend decomposition judgment algorithm is proposed to identify and classify the stock data, improve the data utilization, build a new data set, and use the particle swarm optimization to adjust and optimize the parameters.The results of strategy backtesting show that compared to other deep learning strategies and benchmark strategies, the stock selection method and strategy proposed in this article have significantly improved in terms of victory and return. This indicates that the model has good predictive ability and application potential, and can provide effective decision support for stock investment.
keywords: Trend decomposition Deep learning Parameter optimization Stock selection methods Quantitative strategy
點擊查看論文中文信息
基于趨勢分解算法的深度學習選股方法研究
摘要:部分研究使用機器學習和深度學習模型時未充分挖掘影響股票價格趨勢的其他指標特征,導致了較大的預測誤差且預測結果很難直接應用于獲得超額收益。因此,有必要針對股票特征建立高效的深度學習模型,并充分挖掘影響股票價格趨勢的因子以提高預測精準度。本文針對傳統股票趨勢預測的不足,構建了基于天牛須優化的LSTM-BP神經網絡進行股票價格預測,構建了基于多角度相關性分析的基于粒子群優化的PCA-BP神經網絡模型進行趨勢預測。綜合考慮價格預測和趨勢預測兩個維度,構建深度量化選股方法。并在此過程中提出了一種股票趨勢分解判定算法對股票數據進行識別和分類標記,提升了數據利用率,構建新的數據集并使用基于粒子群優化算法進行參數調整和優化。策略回測結果結果顯示,相較于其他深度學習策略和基準策略,本文提出的選股方法和選股策略在勝率和收益率方面均有大幅提升。表明該模型具有較好的預測能力和應用潛力,可為股票投資提供有效的決策支持。
基金:
引用
No.****
動態公開評議
共計0人參與
勘誤表
基于趨勢分解算法的深度學習選股方法研究
評論
全部評論