Spherical objects of the multiplicity free Brauer tree algebra with two edges
首發時間:2018-07-09
Abstract:Spherical objects and tilting objects are important concepts in derived categories. They induce derived equivalences by taking derived tensor and mapping cone respectively. In this paper we explicitly describe, using the socalled n-complex, all spherical objects and tilting objects of the multiplicity free Brauer tree algebra with two edges. This algebra is Morita equivalent to the path algebra of a 2-cycle modulo the admissible ideal generated by the paths of length 3. We find the spherical objects are precisely the indecomposable direct summands of the tilting objects.
keywords: Brauer tree algebra; Spherical object;tilting object;derived Picard group;n-complex
點擊查看論文中文信息
帶兩條邊且無重數的Brauer樹代數上的球面對象
摘要:球面對象和傾斜對象是導出范疇中重要的概念,它們可以分別通過取導出張量函子和映射錐得到導出等價。本文中我們將借助于n- 復形詳細描述一個Brauer樹代數上所有的球面對象和傾斜對象,即對應于帶兩條邊且無重數的樹的Brauer代數,它Morita等價于長為2的定向圈的路代數模去由長為3 的道路生成的容許理想。我們發現它的球面對象恰為傾斜對象的不可分解直和項。
關鍵詞: Brauer樹代數 球面對象 傾斜對象 導出Picard 群 n-復形
引用
No.****
同行評議
勘誤表
帶兩條邊且無重數的Brauer樹代數上的球面對象
評論
全部評論